Média móvel O indicador técnico da média móvel mostra o valor médio do preço do instrumento por um determinado período de tempo. Quando se calcula a média móvel, uma média do preço do instrumento para este período de tempo. À medida que o preço muda, sua média móvel aumenta ou diminui. Existem quatro tipos diferentes de médias móveis: Simples (também conhecido como Aritmética), Exponencial. Alisado e ponderado. A média móvel pode ser calculada para qualquer conjunto de dados seqüenciais, incluindo preços de abertura e fechamento, preços mais altos e mais baixos, volume de negócios ou outros indicadores. Muitas vezes, é o caso quando se usam médias móveis duplas. A única coisa em que as médias móveis de diferentes tipos divergem consideravelmente umas das outras, é quando os coeficientes de peso, que são atribuídos aos dados mais recentes, são diferentes. Caso falamos da média móvel simples. Todos os preços do período de tempo em questão são de valor igual. A média móvel exponencial e a média móvel ponderada linear atribuem mais valor aos preços mais recentes. A maneira mais comum de interpretar a média móvel do preço é comparar sua dinâmica com a ação do preço. Quando o preço do instrumento sobe acima de sua média móvel, aparece um sinal de compra, se o preço cai abaixo da média móvel, o que temos é um sinal de venda. Este sistema de negociação, baseado na média móvel, não foi projetado para fornecer entrada no mercado diretamente no seu ponto mais baixo, e sua saída diretamente no pico. Permite atuar de acordo com a seguinte tendência: comprar logo depois que os preços chegam ao fundo e vender logo depois que os preços atingiram seu pico. As médias móveis também podem ser aplicadas aos indicadores. É aí que a interpretação das médias móveis dos indicadores é semelhante à interpretação das médias móveis de preços: se o indicador sobe acima de sua média móvel, isso significa que o movimento do indicador ascendente provavelmente continuará: se o indicador cai abaixo da média móvel, isso Significa que é provável que continue indo para baixo. Aqui estão os tipos de médias móveis no gráfico: Média de Movimento Simples (SMA) Média de Movimento Exponencial (EMA) Média de Movimento Suavizada (SMMA) Média de Movimento Ponderada Linear (LWMA) Você pode testar os sinais comerciais deste indicador, criando um Consultor Especialista No MQL5 Wizard. Cálculo da média móvel simples (SMA) Simples, ou seja, a média móvel aritmetica é calculada resumindo os preços do encerramento do instrumento durante um certo número de períodos únicos (por exemplo, 12 horas). Esse valor é então dividido pelo número desses períodos. SMA SUM (FECHAR (i), N) N SUM SOM FECHAR (i) período atual fechar preço N número de períodos de cálculo. Média de Mudança Exponencial (EMA) A média móvel suavizada exponencialmente é calculada pela adição de uma certa parcela do preço de fechamento atual ao valor anterior da média móvel. Com médias movidas exponencialmente suavizadas, os preços de fechamento mais recentes são de maior valor. A média móvel exponencial de porcentagem de P será semelhante a: EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) FECHAR (i) preço de fechamento atual EMA (i - 1) valor da Média Móvel De um período anterior P a porcentagem de uso do valor do preço. Média Mínima Suavizada (SMMA) O primeiro valor desta média móvel suavizada é calculado como a média móvel simples (SMA): SUM1 SUM (CLOSE (i), N) A segunda média móvel é calculada de acordo com esta fórmula: SMMA (i) (SMMA1 (N-1) FECHAR (i)) N As médias móveis de sucesso são calculadas de acordo com a fórmula abaixo: PREVSUM SMMA (i-1) N SMMA (i) (PREVSUM - SMMA (i-1) FECHAR (i)) N SUM SUM SUM1 soma total de preços de fechamento para N períodos é contado a partir da barra anterior PREVSUM suma alisada da barra anterior média SMMA (i-1) média movida da barra anterior SMMA (i) média lisa suavizada da barra atual (Exceto para o primeiro) FECHAR (i) preço de fechamento atual N período de suavização. Após as conversões aritméticas, a fórmula pode ser simplificada: SMMA (i) (SMMA (i - 1) (N - 1) FECHAR (i)) N Média linear móvel ponderada (LWMA) No caso da média móvel ponderada, os dados mais recentes são De mais valor do que mais dados iniciais. A média móvel ponderada é calculada multiplicando cada um dos preços de fechamento dentro da série considerada, por um certo coeficiente de peso: LWMA SUM (FECHAR (i) i, N) SOMA (i, N) SUM SUM CLOSE (i) preço de fechamento atual SUM (i, N) soma total dos coeficientes de peso N período de suavização. Os dados de remoção removem a variação aleatória e mostram tendências e componentes cíclicos. Inerente na coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é o alisamento. Esta técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de suavização Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Em primeiro lugar, investigaremos alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico entrega em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média calculada ou a média dos dados 10. O gerente decide usar isso como a estimativa de despesas de um fornecedor típico. Isto é uma estimativa boa ou ruim O erro quadrático médio é uma maneira de julgar o quão bom é um modelo. Calculamos o erro quadrático médio. O erro montante verdadeiro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados MSE, por exemplo, os resultados são: Erros de Erro e Esquadrão A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência. Um olhar no gráfico abaixo mostra claramente que não devemos fazer isso. A média pesa todas as observações passadas igualmente. Em resumo, afirmamos que a média ou média simples de todas as observações passadas é apenas uma estimativa útil para a previsão quando não há tendências. Se houver tendências, use diferentes estimativas que levem em consideração a tendência. A média pesa igualmente todas as observações passadas. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra frac suma esquerda (fração direita) x1 esquerda (fração direita) x2,. , Esquerda (fração direita) xn. O (a esquerda (fração à direita)) são os pesos e, obviamente, somam para 1. Média de Mudança de Viver Uma série de indicadores populares, incluindo Índice de Força Relativa (RSI), Rácio Real Médio (ATR) e Movimento Direcional foram desenvolvidos por J. Welles Wilder e introduziu em seu livro de 1978: New Concepts in Technical Trading Systems. Os usuários devem ter cuidado de que Wilder não use a fórmula padrão padrão exponencial padrão. Isso pode ter imitabilidade significativa ao selecionar períodos de tempo adequados para seus indicadores. A fórmula média padrão exponencial padrão converte o período de tempo em uma fração usando a fórmula EMA 2 (n 1) onde n é o número de dias. Por exemplo, o EMA por 14 dias é 2 (14 dias 1) 13.3. Mais selvagem, no entanto, usa um EMA de 114, que é igual a 7.1. Isso equivale a uma média móvel exponencial de 27 dias usando a fórmula padrão. Os indicadores afetados são: Recomendamos que os usuários tentem períodos de tempo mais curtos ao usar um dos indicadores acima. Por exemplo, se você estiver rastreando um ciclo de 30 dias você normalmente selecionaria um período de tempo de 15 dias. Com o RSI, ajuste o período de tempo da seguinte forma: período de tempo RSI (n 1) 2 (15 1) 2 8 dias
No comments:
Post a Comment